Prewhitening and Maximum Likelihood Estimation for Root-Sum-of-Squares Images

نویسندگان

  • R. Fobel
  • G. J. Stanisz
چکیده

INTRODUCTION: In recent years, phased array coils have seen widespread adoption across a variety of MR applications. Multiple receivers can be exploited to improve SNR and/or reduce scan time through parallel imaging methods. Although the matched-filter is the theoretically optimal method for combining coils (highest SNR and no bias) [1], it requires accurate coil sensitivity maps and access to complex image data. Since these are not always available, the alternative Root-Sum-of-Squares (RSS) is the most commonly used method to combine signals originating from different coils. Similar to single-channel or quadrature reception, the assumption of Gaussian noise is valid for RSS images at high SNR. At low SNR, there is a magnitude bias that increases with the number of coils [2]. This can cause systemic errors in quantitative measurements that depend on data points close to the noise floor (e.g. Diffusion, Relaxometry, Magnetization Transfer, etc.).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images.

Effective denoising is vital for proper analysis and accurate quantitative measurements from magnetic resonance (MR) images. Even though many methods were proposed to denoise MR images, only few deal with the estimation of true signal from MR images acquired with phased-array coils. If the magnitude data from phased array coils are reconstructed as the root sum of squares, in the absence of noi...

متن کامل

Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm

Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...

متن کامل

Maximum likelihood parameter estimation of textures using a Wold-decomposition based model

We present a solution to the problem of modeling, parameter estimation, and synthesis of natural textures. The texture field is assumed to be a realization of a regular homogeneous random field, which can have a mixed spectral distribution. On the basis of a 2-D Wold-like decomposition, the field is represented as a sum of a purely indeterministic component, a harmonic component, and a countabl...

متن کامل

A Novel Approach for Statistical Estimation of HARDI Diffusion Parameters from Rician and Non-Central Chi Magnitude Images

Introduction: The statistics of noisy MRI magnitude and root sum-of-squares (SoS) images are accurately modeled by the Rician and non-central chi (NCC) probability distributions, respectively [1]. In diffusion MRI (dMRI), the noise bias introduced by these distributions leads to distortion of estimated quantitative diffusion parameters [2]. One approach to addressing this noise bias is to denoi...

متن کامل

Estimation of Genotypic Correlation and Heritability of some of Traits in Faba Bean Genotypes Using Restricted Maximum Likelihood (REML)

In order to estimation genotypic correlation and heritability of some faba bean traits, 26 faba bean genotypes were evaluated in a randomized complete block design with three replications during 2014-16 growing seasons in Agricultural Research Sation of Borujerd located in Lorestan province, Iran. The restricted maximum likelihood (REML) was used to estimate the genotypic and phenotypic correla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008